Ligand-Controlled Stereodivergent, Enantioselective Conjugate Addition of 2-Oxazoline- and 2-Thiazoline-4-carboxylate to Nitroalkene Catalyzed by Chiral Copper Complexes

Yukiko Matsuda, Akihiro Koizumi, Ryosuke Haraguchi, and Shin-ichi Fukuzawa*
Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Supporting Information

Abstract

The copper-catalyzed asymmetric conjugate addition of 2 -oxazoline- and 2-thiazoline-4-carboxylate to a nitroalkene proceeded to give either the syn or anti adduct selectively in high enantiomeric excess when an appropriate chiral ligand was used. Subsequent reduction of the nitro group followed by hydrolysis of the oxazoline ring yielded an optically active γ-lactam of protected α-quaternary serine derivative.

$\mathrm{Ar}=\mathrm{Ph}, 3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

INTRODUCTION

α, α-Disubstituted amino acids (α-quaternary amino acids) have been of interest as nonproteinogenic amino acids and as useful substrates for modified peptides and unnatural proteins. ${ }^{1}$ The synthetic study of chiral α-quaternary amino acids could provide potential biologically active substrates that can be useful in drug discovery. An oxazolone is an extremely useful building block to access chiral α-quaternary amino acids. There are numerous examples of organocatalytic aldol, Michael, and alkylation reactions of oxazolones that provide chiral α quaternary amino acids when an appropriate electrophile is used. ${ }^{2}$ Recently, the Fu and Lu research groups independently reported the chiral phosphine-catalyzed γ-addition of oxazolones to allenoates, which affords the corresponding oxazolones with a chiral quaternary carbon and provides ready access to protected α-quaternary amino acids. ${ }^{3}$

2-Oxazoline-4-carboxylate is an alternative building block of α-quaternary amino acids; it should be a framework of protected α-quaternary serine derivatives. Park and co-workers reported the chiral phase-transfer-catalyzed Michael addition of 2-oxazoline-4-carboxylate with acrylate. Subsequent hydrolysis of the resulting conjugate adduct yielded a chiral α-quaternary glutamic acid. ${ }^{4}$ Overman and co-workers reported the diastereoselective Michael addition of chiral 5-methyl-2-oxazo-line-4-carboxylate to an unsaturated ester; the adduct, upon treatment with LDA, gives a chiral α-quaternary serine derivative after hydrolysis. ${ }^{5}$ 2-Thiazoline-4-carboxylates are also good building blocks for α-quaternary cysteine derivatives. ${ }^{6}$

Deng ${ }^{7}$ and our ${ }^{8}$ research groups independently succeeded in achieving the stereodivergent asymmetric conjugate addition of 1-pyrroline-5-carboxylate to nitroalkenes, where the diastereoselectivity (syn/anti-selectivity) is controlled by a chiral copper or silver catalyst. The corresponding pyrrolidine product with a spiro- γ-lactam-bearing chiral quaternary center was obtained after hydrogenation of the Michael adduct.

Inspired by the success of the metal-catalyzed asymmetric conjugate addition of 1 -pyrroline-5-carboxylates to nitroalkenes, we envisaged that 2 -oxazoline-4-carboxylates, which are analogous to 1-pyrroline-5-carboxylates, would give chiral α-quaternary serine derivatives when subjected to metalcatalyzed Michael addition with nitroalkenes. As stated earlier, chiral α-quaternary amino acids have grown increasingly important, and the metal-catalyzed methodology described here will provide a versatile route for the synthesis of this class of compounds. Further, the synthesis of α-quaternary amino acids with varied electronic properties as well as diverse stereochemistry is a challenging subject.

In this paper, we report the first stereodivergent coppercatalyzed asymmetric Michael addition of 2 -oxazoline- and 2 -thiazoline-4-carboxylates to nitroalkenes by choosing an appropriate chiral ligand. We also report the transformation of the Michael adduct to its corresponding γ-lactam of protected α-quaternary serine derivative.

RESULTS AND DISCUSSION

We first examined the reaction of methyl 2-phenyl-2-oxazoline4 -carboxylate 1 with trans- β-nitrostyrene 2 using combinations of several copper salts and chiral ligands (Figure 1). Table 1 summarizes the results of the reaction with various chiral copper complexes. The reaction was carried out in THF at room temperature for 24 h using $5 \mathrm{~mol} \%$ copper salt and 5.5 $\mathrm{mol} \%$ chiral ligand. The combination of CuOAc and chiral $P, N-$ ligand $i-\operatorname{Pr}-\mathrm{FcPHOX} \mathbf{L 1}$ gave a mixture of the syn-3a and anti-4a adducts in 82:18 ratio and 76% combined yield, and syn3a was produced in 88% ee (entry 1). The syn-to-anti ratio of the adducts was determined by ${ }^{1} \mathrm{H}$ NMR integration of the

[^0]

Figure 1. Chiral P, N - and P, S-ligands.
Table 1. Reaction of 2-Oxazoline- and 2-Thiazoline-4carboxylates with Nitroalkene ${ }^{a}$

${ }^{a}$ Conditions: $\mathbf{1}$ (0.20 mmol$), \mathbf{2}(0.22 \mathrm{mmol}), \mathrm{CuOAc}(5 \mathrm{~mol} \%), \mathbf{L}$ $(5.5 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}(0.04 \mathrm{mmol})$, THF $(1.0 \mathrm{~mL}), \mathrm{rt}, 24 \mathrm{~h} .{ }^{b}$ Combined isolated yield of syn- and anti-isomers. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by chiral HPLC. ${ }^{e} \mathrm{CuBF}_{4}$ was used as a copper salt.
methylene signal of the oxazoline ring and/or the methyl ester signal. As in our previous report, ${ }^{7}$ the syn/anti-stereochemistry is defined by the relative configuration of the imino and phenyl groups. The relative and absolute configuration of all the other adducts was assumed by analogy to that of the product obtained in the reaction with 1-pyrroline-5-carboxylate. The stereoisomeric adducts with upfield (4.0 ppm) and downfield (4.4 ppm) benzyl signals were assigned syn and anti stereochemistry, respectively. The absolute configuration of syn-3a was temporarily assigned as ($4 R, 1^{\prime} R$) (and confirmed by X-ray crystallography of the corresponding thiazoline analogue, as discussed later). The chiral complex with t-Bu-FcPHOX L2 ligand improved the syn selectivity and enantiomeric excess of syn-3a (93% ee) (entry 2). The use of the more hindered FcPHOX ligand $\mathbf{L 3}$ (two $-\mathrm{CH}_{3}$ groups attached to each phenyl moiety) decreased the reaction yield but had a minor effect on the syn selectivity with the ee of syn-3a being almost the same as that obtained with L2 (entry 3). The use of electron-poor FcPHOX ligand L4 (two electron withdrawing $-\mathrm{CF}_{3}$ groups attached to each phenyl moiety) dramatically switched the
diastereoselectivity in favor of the anti adduct (syn/anti = 3:97); anti-4a was produced as the major product with 97% ee (entry 4). A similar diastereo-switch was reported in the asymmetric 1,3-dipolar cycloaddition of azomethine ylide with nitroalkenes: electron-rich ligands gave the exo-cycloadduct whereas electron-poor ligands gave the endo-cycloadduct. ${ }^{9}$ The anti adduct was produced when chiral P, S-ligand FeSulphos $\mathbf{L} 5$ was used, and the relative and absolute configuration of the adduct was the same as $\mathbf{4 a}$ (entry 5). The anti-selectivity observed with ligand L5 is not clearly understood. However, it has been reported in the literature that the diastereo-fashion depends on the nature of alkenes in the copper/L5-catalyzed reactions with azomethine ylide. ${ }^{10} \mathrm{~A}$ similar stereochemical outcome was observed when CuBF_{4} copper salt was used but the yields, diastereoselectivities, and ee values were slightly lower than that with CuOAc (entries 6-8); the chiral catalyst with ligands $\mathbf{L 2}$ and L4 favors syn and anti selectivity, respectively.

The reaction of methyl 2-thiazoline-4-carboxylate 5 with 2 was then examined under the same reaction conditions using CuOAc and chiral ligands $\mathbf{L 1} \mathbf{- L 5}$. The thiazoline ring did not affect the reaction outcome, although the coordinating sulfur atom could interact with copper. Similar to the results obtained in the reactions with $\mathbf{1}$, in these reactions the syn-adducts were also obtained in good yields and enantioselectivities when the electron-rich ligand L1 was used (entries 9-11), whereas the electron-poor ligand L4 resulted in anti selectivity (entry 12). P, S-Ligand L5 also gave the anti-adduct (entry 13).

Table 2 summarizes the optimization experiments; the reaction was examined by using various solvents and bases. In

Table 2. Optimization of the Reaction ${ }^{a}$

entry	1 or 5	L	solvent	base	$\begin{aligned} & \text { yield } \\ & (\%)^{b} \end{aligned}$	$\begin{aligned} & \text { syn/ } \\ & \text { anti }^{c} \end{aligned}$	$\begin{aligned} & \text { ee (\%) } \\ & (\text { syn })^{d} \end{aligned}$
1	1	L2	THF		66	84:16	96
2	1	L2	THF	NEt_{3}	66	88:12	93
3	1	L2	THF	pyridine	65	79:21	97
4	1	L2	THF	DIPEA	61	81:19	96
5	1	L2	THF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	52	63:37	94
6	1	L2	$\mathrm{Et}_{2} \mathrm{O}$		72	80:20	94
7	1	L2	DME		72	97:3	94
8	1	L2	DCM		68	87:13	79
9	1	L2	toluene		76	96:4	95
10^{e}	5	L1	THF		81	90:10	99
11^{e}	5	L1	THF	NEt_{3}	86	95:5	99
12^{e}	5	L1	THF	pyridine	86	89:11	99
13^{e}	5	L1	THF	DIPEA	83	89:11	99
14^{e}	5	L1	THF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	71	50:50	72
15^{e}	5	L1	$\mathrm{Et}_{2} \mathrm{O}$	NEt_{3}	85	94:6	99
16^{e}	5	L1	DME	NEt_{3}	85	95:5	99
17^{e}	5	L1	DCM	NEt_{3}	76	90:10	97
18^{e}	5	L1	toluene	NEt_{3}	83	93:7	99

${ }^{a}$ Conditions: $\mathbf{1}$ or $\mathbf{5}(0.20 \mathrm{mmol}), \mathbf{2}(0.22 \mathrm{mmol})$, $\mathrm{CuOAc}(5 \mathrm{~mol} \%)$, $\mathrm{L}(5.5 \mathrm{~mol} \%)$, solvent, $\mathrm{rt}, 24 \mathrm{~h} .{ }^{b}$ Combined isolated yield of syn- and anti-isomers. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by HPLC. ${ }^{e}$ The reaction was carried out at $-20^{\circ} \mathrm{C}$ for 24 h .
entries $1-9$ and $10-18$, the results of the reaction of $\mathbf{1}$ and 5 with $\mathbf{2 a}$ are shown, respectively. For the reaction of $\mathbf{1}$, every solvent gave moderate to good yields with high syn selectivities and high ee, and we decided that toluene was the choice of solvent considering a total yield and ee, and additional base had limited effect on the reaction. For the reaction of 5 , a good yield
and stereoselectivity were obtained with every combination of solvent and a base, and we determined that the combination of THF and $\mathrm{Et}_{3} \mathrm{~N}$ was the optimized conditions considering the highest yield and stereoselectivity. It must be noted that the reaction should be carried out at $-20^{\circ} \mathrm{C}$ to obtain a high ee.

To evaluate the scope of the syn-selective Michael addition of 1 and 5 , we examined a variety of (E)-nitroalkenes with differing electronic and steric properties under the optimized reaction conditions. The reaction with 1 was carried out in toluene at room temperature for 24 h using $\mathbf{L 2}$ in the absence of $E t_{3} \mathrm{~N}$, and the reaction with 5 was carried out in THF at -20 ${ }^{\circ} \mathrm{C}$ for 24 h using L 1 in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. The results are summarized in Table 3. The sterically hindered o-methyl

Table 3. Scope of Nitroalkenes ${ }^{a}$

entry	1 or 5	Ar in 2	yield (\%) ${ }^{b}$	syn/anti ${ }^{\text {c }}$	ee (\%) $(\mathrm{syn})^{d}$
1	1	Ph	76, 3a	96:4	95
2	1	$o-\mathrm{MeC}_{6} \mathrm{H}_{4}$	68, 3b	63:37	99
3	1	$m-\mathrm{MeC}_{6} \mathrm{H}_{4}$	81, 3c	91:9	99
4	1	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	77, 3d	93:7	98
5	1	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	$78,3 \mathrm{e}$	94:6	99
6	1	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	80, 3f	93:7	93
7	1	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	68, 3g	79:21	94
8	1	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	53, 3h	83:17	95
9	1	2-thienyl	75, 3i	99:1	96
10^{e}	1	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	83, 4e	6:94	89^{f}
11^{e}	1	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	59, 4h	3:97	85^{f}
12	5	Ph	86, 6a	95:5	98
13	5	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	87, 6b	94:6	98
14	5	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	83, 6c	95:5	98
15	5	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	88, 6d	95:5	92
16	5	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	60, 6e	93:7	98
17	5	2-thienyl	$85,6 \mathbf{f}$	99:1	96
18	5	Fc	58, 6g	86:14	97
19^{e}	5	Fc	62, 7 g	2:98	91^{f}

${ }^{a}$ Conditions for entries $1-11: \mathbf{1}(0.20 \mathrm{mmol}), \mathbf{2}(0.22 \mathrm{mmol}), \mathrm{CuOAc}$ ($5 \mathrm{~mol} \%$), L2 $(5.5 \mathrm{~mol} \%)$, toluene $(1.0 \mathrm{~mL})$, rt , 24 h . Conditions for entries 12-19: $5(0.20 \mathrm{mmol}), 2(0.22 \mathrm{mmol}), \mathrm{CuOAc}(5 \mathrm{~mol} \%), \mathrm{L} 1$ ($5.5 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{~N}$ (0.04 mmol), THF (1.0 mL), $-20^{\circ} \mathrm{C}, 24 \mathrm{~h}$. ${ }^{b}$ Combined isolated yield of syn- and anti-isomers. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by chiral HPLC. ${ }^{e}$ L4 used as a ligand. ${ }^{f}$ ee for the anti-isomer.
substituent on the phenyl group decreased the yield and synselectivity in the reaction with $\mathbf{1}$ (entry 2). The electrondonating halogen and m-substituents had a limited effect on the reaction, yielding high syn- and enantioselectivities (entries 37). The electron-withdrawing p-nitro substituent decreased the yield (entry 8). When a heteroaryl derivative containing a 2 thienyl group was used as a substrate, good yields were obtained with high syn- and enantioselectivities (entry 9). When electron-poor ligand L4 was used, a switch in diastereoselectivity was realized regardless of the electronic properties of the substituents on the phenyl group; the antiisomers were produced as the major product in the reaction of substrates with p-methoxy and p-nitro substituents (entries $10-$

11 and 19). All nitroalkenes used in the reaction with 1 were usable in the reaction with $\mathbf{5}$; all substituents, except the nitro group, hardly affected the reaction regardless of their electronic properties (entries 12-17).

We were successful obtaining X-ray structures of the ferrocene-substituted syn- and anti-Michael adducts obtained by the reaction of 2 -thiazoline-4-carboxylate with ferrocenesubstituted nitroalkene and were able to assign the relative and absolute configurations of $s y n-6 \mathrm{~g}$ and anti-7g (obtained in entries $18-19$) as ($4 R, 1^{\prime} S$) and ($4 R, 1^{\prime} R$), respectively (see Supporting Information). If the ferrocenyl group were to be replaced by phenyl, then the absolute configuration of syn-6a would be $\left(4 R, 1^{\prime} R\right)$.

We finally examined the reduction of the nitro group in syn3a. The reduction of $\operatorname{syn}-3 \mathrm{a}$ (95% ee) by $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaBH}_{4}$ afforded spiro- γ-lactam 8a in 89% yield with 92% ee. Thus, 8a, optically active-protected α-quaternary serine derivative, was obtained with little racemization (Scheme 1).

Scheme 1. Conversion of the Michael Adduct to the Spiro- γ lactam

CONCLUSIONS

The copper-catalyzed conjugate addition of 2-oxazoline- and 2-thiazoline-4-carboxylates with nitroalkenes can yield either the syn- or anti-adduct selectively in high enantiomeric excess when an appropriate chiral ligand is chosen. The electron-neutral and electron-rich chiral P, N-ligands $\mathbf{L 1} \mathbf{- L} \mathbf{3}$ afforded the syn adduct, whereas the electron-poor P, N-ligand $\mathbf{L 4}$ and chiral P, S-ligand L5 afforded the anti-adduct selectively. The chiral Michael adduct thus obtained could be transformed to the corresponding γ-lactam of the protected α-quaternary serine derivative with little racemization. This methodology paves the way for a substrate divergent as well as stereodivergent synthesis of α quaternary amino acid γ-lactams and would prove to be valuable for the discovery of new biologically active compounds.

EXPERIMENTAL SECTION

Typical Experimental Procedure for the Reaction of 2-Oxazoline-4-carboxylate 1 with Nitroalkene 2. All reactions were carried out under a nitrogen atmosphere with oven-dried glassware. To a 20 mL Schlenk tube containing a stirring bar were added $\mathbf{L 2}$ $(5.45 \mathrm{mg}, 0.011 \mathrm{mmol})$ and $\mathrm{CuOAc}(1.20 \mathrm{mg}, 0.011 \mathrm{mmol})$, and dry toluene $(1.0 \mathrm{~mL})$ was introduced from the rubber septum (1.0 mL). After stirring at room temperature for $30 \mathrm{~min}, \mathbf{1}(41.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ and trans- β-nitrostyrene $2 \mathrm{a}(32.8 \mathrm{mg}, 0.22 \mathrm{mmol})$ were successively added to the solution. The resulting mixture was stirred at the same temperature for 24 h and then filtered through Celite and concentrated in vacuo. The residue was subjected to short silica gel column chromatography (hexane/EtOAc $=2: 1$ as eluent), and a mixture of syn-3a and anti-4a were obtained (combined yield, 54 mg , 76%); a syn/anti ratio of the crude mixture was determined by ${ }^{1} \mathrm{H}$ NMR (syn/anti =82:18). The mixture was further subjected to PTLC to isolate pure syn-3a, and its enantiomeric excess was determined by HPLC. Racemate of all products for HPLC analyses were prepared using $\mathrm{CuOAc} / \mathrm{PPh}_{3}$.
(R)-Methyl 4-((R)-2-Nitro-1-phenylethyl)-2-phenyl-4,5-dihy-drooxazole-4-carboxylate 3a. Yellow solid; $54.0 \mathrm{mg}, 76 \%$ yield; $\mathrm{mp} 85-86{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H}), 5.26$ (dd, $J=3.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=3.8,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.1, 166.1, 134.9, 132.5, 129.2, 129.0, 128.9, 128.8, 128.6, 126.6, 80.5, 76.9, 73.8, 53.0, 52.4; HPLC (Daicel Chiralpak IB, hexane/2-propanol = 99:1, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=17.0 \mathrm{~min}($ minor $), 21.5 \mathrm{~min}($ major $) ;[\alpha]_{\mathrm{D}}{ }^{26}-4.82$ (c 0.05, CHCl_{3}); HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 355.1294, found 355.1310.
(R)-Methyl 4-((R)-2-Nitro-1-(2-methylphenyl)ethyl)-2-phe-nyl-4,5-dihydrooxazole-4-carboxylate 3b. Brown solid; 50.1 $\mathrm{mg}, 68 \%$ yield; $\mathrm{mp} 78-88{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.24-$ $7.14(\mathrm{~m}, 3 \mathrm{H}), 5.11$ (dd, $J=4.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=10.3,13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J$ $=4.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 171.5,166.0,137.6,133.9,132.5,131.2,129.0,128.6,128.4$, 127.2, 126.9, 126.6, 80.7, 77.4, 73.7, 52.9, 46.3, 20.0; HPLC (Daicel Chiralpak IB, hexane $/ 2$-propanol $=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=$ 12.0 min (minor), 29.4 min (major); $[\alpha]_{\mathrm{D}}^{26}+40.7$ (c 0.10, CHCl_{3}); HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 369.1451$, found 369.1453.
(R)-Methyl 4-((R)-2-Nitro-1-(3-methylphenyl)ethyl)-2-phe-nyl-4,5-dihydrooxazole-4-carboxylate 3c. Yellow oil; 59.7 mg , 81% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.12(\mathrm{~m}, 3 \mathrm{H}), 5.29(\mathrm{dd}$, $J=4.3,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=10.8,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=4.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,164.8$, 137.6, 133.6, 131.3, 128.6, 128.4, 127.9, 127.8, 127.4, 125.5, 124.5, 79.3, 75.8, 72.6, 51.7, 51.2, 20.4; HPLC (Daicel Chiralpak IB, hexane/ 2-propanol = 99:1, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=11.1 \mathrm{~min}($ minor $)$, $15.9 \min$ (major); $[\alpha]_{\mathrm{D}}{ }^{26}-24.5$ (c 0.16, CHCl_{3}); HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$391.1288, found 391.1270.
(R)-Methyl 4-((R)-2-Nitro-1-(4-methylphenyl)ethyl)-2-phe-nyl-4,5-dihydrooxazole-4-carboxylate 3d. Yellow oil; 56.7 mg , 77% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 4 \mathrm{H}), 5.28$ (dd, $J=4.1,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.6,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.84(\mathrm{dd}, J=4.1,10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.1, 166.0, 138.6, 132.4, 131.7, 129.9, 129.0, 128.7, 128.6, 126.7, 80.5, 77.0, 73.8, 52.9, 52.1, 21.2; HPLC (Daicel Chiralpak IB, hexane/ 2-propanol $=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=13.8 \mathrm{~min}($ minor $)$, $17.5 \min$ (major); $[\alpha]_{\mathrm{D}}{ }^{26}-20.5$ ($c 0.11, \mathrm{CHCl}_{3}$); HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$391.1270, found 391.1264.
(R)-Methyl 4-((R)-2-Nitro-1-(4-methoxylphenyl)ethyl)-2-phe-nyl-4,5-dihydrooxazole-4-carboxylate 3e. Yellow solid; 60.0 mg , 78% yield; mp $130-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{dd}, J=4.0,13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{dd}, J=10.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 171.2,166.0,159.8,132.4,130.0,128.9,128.6,126.7,114.5$, 80.6, 77.4, 77.0, 73.8, 55.3, 52.9, 51.7; HPLC (Daicel Chiralpak IB, hexane $/ 2$-propanol $=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=28.3 \mathrm{~min}$ (minor), 31.6 min (major); $[\alpha]_{\mathrm{D}}{ }^{26}-3.74$ (c $0.095, \mathrm{CHCl}_{3}$). HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 385.1400$, found 385.1381.
(R)-Methyl 4-((R)-2-Nitro-1-(4-chlorophenyl)ethyl)-2-phenyl-4,5-dihydrooxazole-4-carboxylate 3f. Yellow oil; $62.2 \mathrm{mg}, 80 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-$ $7.42(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 5.15(\mathrm{dd}, J=4.1,13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{dd}, J=11.0,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.89(\mathrm{dd}, J=4.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,166.3,134.8,133.6,132.6,130.4$, 129.3, 128.9, 128.6, 126.4, 80.3, 76.6, 73.7, 53.0, 51.5; HPLC (Daicel

Chiralpak IB, hexane $/ 2$-propanol $=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=$ 21.5 min (minor), 37.2 min (major). $[\alpha]_{\mathrm{D}}^{26}+8.28$ (c $0.11, \mathrm{CHCl}_{3}$); HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Cl}_{1} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 389.0904$, found 389.0899 .
(R)-Methyl 4-((R)-2-Nitro-1-(4-bromophenyl)ethyl)-2-phenyl-4,5-dihydrooxazole-4-carboxylate 3g. Yellow oil; $58.9 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-$ $7.42(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{dd}, J=3.7,13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.99 (dd, $J=10.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.88(\mathrm{dd}, J=3.7,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,166.3,134.1,132.6,132.3,130.7$, 129.0, 128.7, 126.4, 123.0, 80.3, 76.6, 73.8, 53.0, 51.6. HPLC (Daicel Chiralpak IB, hexane $/ 2$-propanol $=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=$ 22.9 min (minor), 38.6 min (major); $[\alpha]_{\mathrm{D}}^{26}+7.73$ (c $0.14, \mathrm{CHCl}_{3}$). HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{1} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 433.0399$, found 433.0420.
(R)-Methyl 4-((R)-2-Nitro-1-(4-nitrophenyl)ethyl)-2-phenyl-4,5-dihydrooxazole-4-carboxylate 3 h . Yellow solid; 42.3 mg , 53% yield; mp $53-54^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.44(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{dd}, J$ $=3.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=10.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=3.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,166.7,148.2,142.7$, 132.8, 130.3, 129.0, 128.7, 126.1, 124.1, 80.2, 76.3, 73.8, 53.2, 51.3; HPLC (Daicel Chiralpak IB, hexane $/ 2$-propanol $=99: 1$, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=27.6 \mathrm{~min}($ minor $), 48.2 \mathrm{~min}$ (major); $[\alpha]_{\mathrm{D}}{ }^{26}+41.1$ (c $0.074, \mathrm{CHCl}_{3}$); HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$ 400.1145 , found 400.1140 .
(R)-Methyl 4-((R)-2-Nitro-1,2-thienylethyl)-2-phenyl-4,5-di-hydrooxazole-4-carboxylate 3i. White solid; $54.1 \mathrm{mg}, 75 \%$ yield; $\mathrm{mp} 83-84{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{dd}, J=3.7,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=10.4$, $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=3.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 170.6,166.5,136.8,132.5,129.0,128.6,128.2,127.2,126.5,80.5$, 78.0, 77.4, 74.3, 53.2, 48.0. HPLC (Daicel Chiralpak IB, hexane/2propanol $=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=14.6 \mathrm{~min}($ minor $), 17.8$ min (major); $[\alpha]_{\mathrm{D}}^{26}-71.1\left(c 0.086, \mathrm{CHCl}_{3}\right)$. HRMS (ESI-TOF) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{1}[\mathrm{M}+\mathrm{H}]^{+} 361.0858$, found 361.0875 .
(R)-Methyl 4-((S)-2-Nitro-1-phenylethyl)-2-phenyl-4,5-dihy-drooxazole-4-carboxylate 4a. Yellow oil; $53.2 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.51$ $(\mathrm{m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.09-4.94(\mathrm{~m}, 2 \mathrm{H})$, $4.56-4.52(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,166.9,134.4,132.4,129.4,129.0$, 128.8, 128.7, 128.6, 126.6, 80.0, 76.8, 72.6, 53.4, 49.0. HPLC (Daicel Chiralpak ID-3, hexane $/ 2$-propanol $=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}$ $=13.6 \mathrm{~min}$ (minor), 18.2 min (major); $[\alpha]_{\mathrm{D}}{ }^{25}-151\left(c 0.057, \mathrm{CHCl}_{3}\right)$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$377.1113, found 377.1129.
(R)-Methyl 4-((S)-2-Nitro-1-(4-methoxyphenyl)ethyl)-2-phe-nyl-4,5-dihydrooxazole-4-carboxylate 4 e . Yellow oil; 54.6 mg , 71% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.05-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ $(\mathrm{m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.8, 166.8, 159.7, 132.3, 130.5, 128.8, 128.6, 126.6, 126.1, 114.4, 80.1, 77.1, 72.7, 55.3, 53.4, 48.5; HPLC (Daicel Chiralpak ID-3, hexane $/ 2$-propanol $=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=22.5 \mathrm{~min}$ (minor), 30.3 min (major). $[\alpha]_{\mathrm{D}}{ }^{25}+1.83$ (c $0.060, \mathrm{CHCl}_{3}$); HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$385.1400, found 385.1381.
(R)-Methyl 4-((S)-2-Nitro-1-(4-nitrophenyl)ethyl)-2-phenyl-4,5-dihydrooxazole-4-carboxylate 4 h . Yellow solid; 54.1 mg , 59% yield; mp $138-140{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.92-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}$, $4 \mathrm{H}), 5.14-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.52(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.37$ (dd, $J=4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.15(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,167.5,148.2,142.1,132.8,130.6$,
128.8, 128.8, 126.0, 124.0, 79.5, 76.5, 72.9, 53.7, 48.8; HPLC (Daicel Chiralpak ID-3, hexane $/ 2$-propanol $=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}$ $=29.5 \mathrm{~min}$ (minor), 49.2 min (major); $[\alpha]_{\mathrm{D}}{ }^{26}-7.58$ (c 0.066, CHCl_{3}). HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$ 400.1145, found 400.1139.
(R)-Methyl 4-((R)-2-Nitro-1-phenylethyl)-2-phenyl-4,5-dihy-drothiazole-4-carboxylate 6a. White solid; $63.8 \mathrm{mg}, 86 \%$ yield; mp $101-102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 2H), $7.55-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 5.29(\mathrm{dd}, J=4.1,13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{dd}, J=10.4,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=4.1,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,170.9,135.4,132.5,132.3,129.1$, 129.0, 128.9, 128.8, 90.2, 77.3, 53.0, 51.1, 39.4; HPLC (Daicel Chiralpak ID-3, hexane $/ 2$-propanol $=98: 2,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) ; $t_{\mathrm{R}}=16.3 \mathrm{~min}$ (major), 17.9 min (minor); $[\alpha]_{\mathrm{D}}{ }^{26}$ +33.3 (c 0.065, CHCl_{3}). HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$371.1066, found 371.1061.
(R)-Methyl 4-((R)-2-Nitro-1-(4-methylphenyl)ethyl)-2-phe-nyl-4,5-dihydrothiazole-4-carboxylate 6b. Yellow oil; 69.6 mg , 87% yield; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 6.88$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{dd}, J=4.2,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=10.8$, $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=4.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,170.7,159.8,132.6,132.3,130.24,128.9$, 128.8, 127.3, 114.42, 90.4, 77.5, 55.4, 53.0, 50.6, 39.4; HPLC (Daicel Chiralpak ID-3, hexane $/ 2$-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$); $t_{\mathrm{R}}=23.8 \mathrm{~min}($ major $), 31.7 \mathrm{~min}($ minor $) ;[\alpha]_{\mathrm{D}}{ }^{26}$ $+31.1\left(c 0.054, \mathrm{CHCl}_{3}\right)$. HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}$423.0991, found 423.1006.
(R)-Methyl 4-((R)-2-Nitro-1-(4-chlorophenyl)ethyl)-2-phenyl-4,5-dihydrothiazole-4-carboxylate 6 c . White solid; $67.1 \mathrm{mg}, 83 \%$ yield; mp 113-114 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 5.19(\mathrm{dd}, J=4.0,13.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=10.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=4.0,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.1, 170.9, 134.7, 134.6, 134.1, 134.0, 132.3, 130.5, 129.1, 128.8, 89.9, 77.0, 52.9, 50.6, 39.5. HPLC: Daicel Chiralpak IB (hexane/2-propanol $=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$); $t_{\mathrm{R}}=16.8 \mathrm{~min}($ minor $), 60.8 \mathrm{~min}($ major $) ;$ $[\alpha]_{\mathrm{D}}{ }^{26}+29.2$ (c 0.100, CHCl_{3}). HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$405.0676, found 405.0682.
(R)-Methyl 4-((R)-2-Nitro-1-(4-bromophenyl)ethyl)-2-phenyl-4,5-dihydrothiazole-4-carboxylate 6d. Yellow oil; $78.8 \mathrm{mg}, 88 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-$ $7.43(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=4.1,13.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.97 (dd, $J=10.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=4.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ $(\mathrm{d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,171.0,134.6,132.4,132.3,132.2$, 130.8, 128.9, 128.8, 123.0, 89.9, 77.0, 53.1, 50.7, 39.5. HPLC: Daicel Chiralpak IB (hexane $/ 2$-propanol $=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) $; t_{\mathrm{R}}=18.6 \mathrm{~min}($ minor $), 64.1 \mathrm{~min}($ major $) ;[\alpha]_{\mathrm{D}}{ }^{26}$ +39.5 (c 0.090, CHCl_{3}). HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 449.0171$, found 449.0178 .
(R)-Methyl 4-((R)-2-Nitro-1-(4-nitrophenyl)ethyl)-2-phenyl-4,5-dihydrothiazole-4-carboxylate 6e. Yellow oil; $49.8 \mathrm{mg}, 60 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.91$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{dd}, J=4.1,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=10.6$, $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=4.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 171.9,170.9,148.1,143.2,132.7,132.1,130.4,128.9,124.0$, 89.6, 76.7, 53.2, 51.0, 39.9. HPLC (Daicel Chiralpak IB, hexane/2propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) ; t_{\mathrm{R}}=$ 17.6 min (minor), 63.2 min (major); $[\alpha]_{\mathrm{D}}{ }^{26}+42.6$ (c $0.084, \mathrm{CHCl}_{3}$). HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 416.0916$, found 416.0913.
(R)-Methyl 4-((R)-2-Nitro-1-thienylethyl)-2-phenyl-4,5-dihy-drothiazole-4-carboxylate 6 . Yellow oil; $63.9 \mathrm{mg}, 85 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55-7.42$ (m,
$3 \mathrm{H}), 7.28(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=$ $3.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=3.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=9.9,13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=3.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.53(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.5, 170.6, 137.6, 132.4, 128.9, 128.8, 126.6, 127.1, 126.6, 90.3, 78.5, 53.2, 46.7, 39.2. HPLC (Daicel Chiralpak ID-3, hexane/2-propanol $=$ $95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=13.7 \mathrm{~min}$ (major), 17.3 min (minor); $[\alpha]_{\mathrm{D}}{ }^{26}+41.1$ (c 0.087, CHCl_{3}). HRMS (ESI-TOF) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$377.0630, found 377.0639.
(R)-Methyl 4-((R)-2-Nitro-1-ferrocenylethyl)-2-phenyl-4,5-di-hydrothiazole-4-carboxylate 6 g . Yellow solid; $55.5 \mathrm{mg}, 58 \%$ yield; $\mathrm{mp} 59-61{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 3 \mathrm{H}), 5.55(\mathrm{dd}, J=7.1,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=$ $3.5,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}$, $5 \mathrm{H}), 4.09(\mathrm{dd}, J=3.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.46$ $(\mathrm{d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,170.4$, 132.5, 132.0, 128.7, 128.7, 77.5, 69.9, 69.1, 69.1, 68.9, 68.3, 66.3, 52.8, 44.5, 38.7, 29.8. HPLC (Daicel Chiralpak AS-3, hexane/2-propanol $=$ $95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=18.8 \mathrm{~min}$ (major), $45.5 \min$ (minor); $[\alpha]_{\mathrm{D}}{ }^{24}+7.03$ (c 0.061, CHCl_{3}); HRMS (ESI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FeN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 479.0728$, found 479.0738. CCDC: 1484419.
(R)-Methyl 4-((S)-2-Nitro-1-phenylethyl)-2-phenyl-4,5-dihy-drothiazole-4-carboxylate 7a. White solid; 65.1 mg , 88% yield; mp $96-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~m}, 5 \mathrm{H}), 5.13(\mathrm{dd}, J=10.4,13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{dd}, J=4.5,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=4.5,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,172.3,134.8,132.5,132.1,129.6$, 128.9, 128.8, 128.7, 128.5, 89.8, 77.8, 53.5, 50.4, 39.3. HPLC (Daicel Chiralpak ID-3, hexane $/ 2$-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=11.0 \mathrm{~min}($ minor $), 13.4 \mathrm{~min}($ major $) ;[\alpha]_{\mathrm{D}}{ }^{23}$ -169 (c 0.087, CHCl_{3}); HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$371.1066, found 371.1050.
(R)-Methyl 4-((S)-2-Nitro-1-ferrocenylethyl)-2-phenyl-4,5-di-hydrothiazole-4-carboxylate 7 g . Yellow solid; $59.2 \mathrm{mg}, 62 \%$ yield; mp 148-152 ${ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (d, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{dd}, J=3.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (dd, $J=6.8,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=3.9,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20-4.14(\mathrm{~m}, 7 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.7, 171.1, 132.4, 132.0, 128.7, 128.6, 91.7, 85.0, 77.3, 69.7, 69.2, 68.9, 68.2, 66.6, 53.2, 45.1, 36.8; HPLC (Daicel Chiralpak ID-3, hexane $/ 2$-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, flow rate $=1.0 \mathrm{~mL} /$ $\min) t_{\mathrm{R}}=17.1 \mathrm{~min}$ (minor), $26.6 \min$ (major); $[\alpha]_{\mathrm{D}}{ }^{26}+39.4$ (c 0.107, CHCl_{3}). HRMS (ESI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FeN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 479.0728, found 479.0739. CCDC: 1484418.

Transformation of the Michael Adduct to the γ-Lactam. Under a nitrogen atmosphere, to a 20 mL Schlenk tube containing a stirring bar was added syn-3a (95% ee, $70.9 \mathrm{mg}, 0.20 \mathrm{mmol}$), and THF $(2 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ were introduced through the rubber septum. $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(47.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added to the mixture, and after stirring at $0{ }^{\circ} \mathrm{C}$ for 20 min , then $\mathrm{NaBH}_{4}(37.8 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added portion by portion to result in a black solution at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 2 h . The reaction was quenched by aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(110.6 \mathrm{mg}, 0.8 \mathrm{mmol}) /$ $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, and the mixture was stirred at room temperature for 2 h . The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography to afford 8a.
(5R,9R)-2,9-Diphenyl-3-oxa-1,7-diazaspiro[4.4]non-1-en-6one 8 a . White solid; $51.9 \mathrm{mg}, 89 \%$ yield; $\mathrm{mp} 169-170{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.28(\mathrm{~m}, 6 \mathrm{H})$, $7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{br}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{dd}, J$ $=7.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=3.3,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=3.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 176.8, 165.6, 139.0, 131.9, 129.3, 128.8, 128.4, 127.9, 127.7, 127.2, 79.7, 70.0, 50.5, 46.3. HPLC (ESI-TOF) (Daicel Chiralpak OD-H,
hexane $/ 2$-propanol $=70: 30$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=20.2 \mathrm{~min}$ (minor), $24.5 \mathrm{~min}($ major $) ;[\alpha]_{D}{ }^{25}-276$ (c $0.054, \mathrm{CHCl}_{3}$). HRMS (ESI-TOF) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$315.1110, found 315.1116.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01722.

Optimization of the reaction, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, and HPLC analytical data for products $3 \mathbf{a}-3 \mathbf{h}, \mathbf{4 a}, 4 \mathbf{e}$, $\mathbf{4 h}, \mathbf{6 a} \mathbf{- 6 g}, 7 \mathrm{a}$, and 7 g (PDF)
Crystallographic data for $\mathbf{6 g}$ (CIF)
Crystallographic data for 7 g (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: orgsynth@kc.chuo-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge financial support from the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid No. 16K05704 for scientific research.

REFERENCES

(1) For reviews, see: (a) Vogt, H.; Bräse, S. Org. Biomol. Chem. 2007, 5, 406. (b) Metz, A. E.; Kozlowski, M. C. J. Org. Chem. 2015, 80, 1. (2) For a review, see: (a) de Castro, P. P.; Carpanez, A. G.; Amarante, G. W. Chem. - Eur. J. 2016, 22, 10294. (b) Fisk, J. S.; Mosey, R. A.; Tepe, J. Chem. Soc. Rev. 2007, 36, 1432.
(3) (a) Kalek, M.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 9438. (b) Wang, T.; Yu, Z.; Hoon, D. L.; Phee, C. Y.; Lan, Y.; Lu, Y. J. Am. Chem. Soc. 2016, 138, 265.
(4) (a) Jew, S.-s.; Lee, Y.-J.; Lee, J.; Kang, M. J.; Jeong, B.-S.; Lee, J.H.; Yoo, M.-S.; Kim, M.-J.; Choi, S.-h.; Ku, J.-M.; Park, H.-g. Angew. Chem., Int. Ed. 2004, 43, 2382. (b) Lee, Y.-J.; Lee, J.; Kim, M.-J.; Jeong, B.-S.; Lee, J.-H.; Kim, T.-S.; Lee, J.; Ku, J.-M.; Jew, S.-s.; Park, H.-g. Org. Lett. 2005, 7, 3207.
(5) Becker, M. H.; Chua, P.; Downham, R.; Douglas, C. J.; Garg, N. K.; Hiebert, S.; Jaroch, S.; Matsuoka, R. T.; Middleton, J. A.; Ng, F. W.; Overman, L. E. J. Am. Chem. Soc. 2007, 129, 11987.
(6) (a) Kim, T.-S.; Lee, Y.-J.; Jeong, B.-S.; Park, H.-g.; Jew, S.-s. J. Org. Chem. 2006, 71, 8276. (b) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 13321.
(7) Li, C.-Y.; Yang, W.-L.; Luo, X.; Deng, W.-P. Chem. - Eur. J. 2015, 21, 19048.
(8) Koizumi, A.; Kimura, M.; Arai, Y.; Tokoro, Y.; Fukuzawa, S.-i. J. Org. Chem. 2015, 80, 10883.
(9) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979.
(10) Cabrera, S.; Arrayás, R. G.; Martín-Matute, B.; Cossío, F. P.; Carretero, J. C. Tetrahedron 2007, 63, 6587.

[^0]: Received: July 19, 2016
 Published: August 5, 2016

